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Abstract. With the advent of multiple types of proximities between nodes, multiplex networks have 

emerged widely in the real world and been attracting increasing attention recently. The existing researches on 

community detection in multiplex networks usually assume that all layers come from a same latent consistent 

topology structure, and learn compatible and complementary information from different layers together, so as 

to dig out a shared community structure. However, this assumption is not satisfied in many real-world 

networks due to the existence of noisy/irrelevant links. To address this problem, in this paper we propose a 

multiplex network structure optimization algorithm based on collaborative low-rank and sparse factorization, 

which promotes the collaboration of different layers and lets them decompose as the robust consistent 

representations. In addition, an effective iterative algorithm is designed to optimize and solve the model. The 

experimental results in multiple ground-truth datasets show that this method can significantly improve the 

community detection performance of multiplex complex networks. 

Keywords: Multiplex networks, Low-rank sparse representation, Link Selection, Community detection. 

1. Introduction 

Complex networks are both irregular and not completely random networks, and widely existed in real 

life, such as social networks, World Wide Web, protein interaction networks, flight network and so on. One 

of the most prominent properties of such networks is the community structure, which closely related to the 

attribute, function, organization and dynamic of a network. Although there is no precise definition of 

community structure at present, Newman [1] et al. put forward a widely accepted definition that the 

community should satisfy the characteristics of dense node connections within the community and relatively 

sparse node connections between the communities. Dividing the complex network into several local and 

close community structures is helpful for us to analyse the functional characteristics of the network, the 

topology of the network, and to understand the relationship between potential network nodes. 

As researches on network science have become more and more mature, the research direction has started 

to transfer from simple graph theory to more complicated real system. In the same time, the focus has also 

gradually transferred from single isolated network to coupling network or multi-layer with mutual influence 

on each other, or multiplex networks [2]. The characteristics of multiplex networks are high dimension, 

complex structure and great difference between layers. However, existing algorithms cannot effectively 

detect its community structure, due to the ubiquitous noisy, meaningless or even inaccurate links within layer 

and the inconsistency between layers in real networks. In recent years, with the deepening of community 

detection research, community detection algorithms based on network structure optimization are emerging. 

By selecting the correct and effective links, structure optimization can make the communities clear and get 

better detection results. Unfortunately, the existing network structure optimization model is only suitable for 

single-layer network, so it is necessary to extend it to multiplex networks and deeply mine the 

complementary information between layers, so as to achieve better multi-layer fusion and collaboration. 

Based on the analysis above, in this paper we propose a multi-layer network structure optimization 

algorithm based on collaborative low rank sparse factorization. Specifically, through the low rank sparse 
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representations within each layer and collaborative constraint between different layers, and the overall 

factorization error approximation in multiplex networks, we get the link selection model with collaborative 

low-rank and sparse factorization. In addition, we design an effective iterative algorithm to optimize the 

model. Finally, experimental results on multiple multiplex networks with ground-truth show that our method 

is effective. 

2. Related work 

2.1. Single-Layer Networks 

With single layer networks as the object, the most of existing approaches focus on the original topology 

structure, while the algorithm based on improving network structure is relatively few. The typical algorithms 

are briefly introduced as follows. GN algorithm [3] is a community detection algorithm that directly changes 

the network structure, and divides the community according to the proposed edge betweenness; Yang et al. 

[4] proposed a community detection algorithm based on semi supervised method, which obtains the node's 

supervision information (whether it belongs to a community or not) according to the corresponding strategy, 

and then connects the edges belonging to the same community node to delete the edges of different 

community nodes Edge-boost [5] is a community detection algorithm based on link prediction. According to 

the similarity index of link prediction, this method adds edges to the network according to the corresponding 

strategy to get the updated network, and then uses the traditional community detection algorithm to divide 

these networks. 

2.2. Multiplex Networks 

Although community detection algorithms for single-layer networks have achieved some results, these 

algorithms cannot be directly used for community detection in multi-layer networks. At present, the most 

commonly used method is based on single-layer network algorithm, and further extended to multi-layer 

network. It is mainly divided into the following categories: Based on modularization, the concept of 

modularization is extended from single-layer network to multi-layer network, such as (PMM) [6] algorithm 

and Didier, The main disadvantage of this method is that it can't distinguish the information rich network 

layer or complementary layer, and lose the global information; based on spectral clustering method, the 

representative algorithms are (SC-ML) [7] and (SC-GED) [8], the problem of this kind of method is that it 

can't fully deal with the network layer which is lack of connection or weak connection, or the layer which 

has broken part; The method based on information diffusion uses the concept of network diffusion to 

integrate the network layer. One of the methods is similar network fusion (SNF) proposed by Wang et al. [9]. 

However, for sparse networks, this method has low information dissemination efficiency, which may lead to 

poor clustering performance. 

3. Methodology 

3.1. Problem Formulation 

A multiplex network is a set of  𝐾 layer networks,  𝐺𝑘(𝑉, 𝐸𝑘), for 𝑘 = 1, … , 𝐾. The number of nodes in 

each layer is the same, 𝑛 = |𝑉|. For each individual layer of the adjacency matrix 𝐀(𝑖) ∈ ℝn×n, for 𝑖 =

1, … , 𝑁, if there is an edge connection between node 𝑣𝑖  and node 𝑣𝑗 , 𝐴𝑖𝑗 = 1, otherwise 𝐴𝑖𝑗 = 0. 

3.2. Proposed Framework 

In real networks, the widespread disturbances and noises obscure seriously the real community structures. 

Therefore, we desire to seek an efficient recovery of adjacency matrix to discover underlying community 

structures, reserve smooth structural low rank effective links(must-links), and get rid of the sparse noisy 

links(cannot-links). It is worth noting that, in the ideal recovery matrix, links appears more within 

communities, which makes the recovery matrix is approximately block diagonal after sorting node properly 

[10]. Thus, the column vectors of recovery matrix corresponding the nodes in the same community are also 

linearly correlated with each other, forming a low-rank recovery matrix 𝐿. With the low-rank constrain, the 

matrix recovery problem can be directly written in the following form: 

𝑚𝑖𝑛
𝐿

 rank (𝐿) s.t. 𝐿𝑖𝑗 = 𝐴𝑖𝑗 , ∀𝑖, 𝑗 ∈ 𝛺                            (1) 
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where 𝐴 ∈ ℝ𝑛×𝑛  and 𝐿 ∈ ℝ𝑛×𝑛  designate the given adjacency matrix, the desired recovery matrix 

respectively. 𝛺 ∈ {0,1}𝑚×𝑛 is a binary matrix denoting the must-link support, which if 𝑒𝑖𝑗 is a cannot-link 

 𝛺𝑖𝑗 = 0 ; when 𝑒𝑖𝑗 is a must-link 𝛺𝑖𝑗 = 1. And we define 𝛺⊥ + 𝛺 = 𝒫0/1(𝐴), where 𝒫0/1(𝐴) represent 

the binaryzation of the matrix 𝐴: 

𝒫0/1(𝐴)𝑖𝑗 = {
0,  if 𝐴𝑖𝑗 = 0

1,  if 𝐴𝑖𝑗 ≠ 1
                              (2) 

For unweighted networks,  𝐴 = 𝒫0/1(𝐴).  Furthermore, considering the noise interference, for the 

must-links, where 𝛺𝑖𝑗 = 1 , we assume that 𝐴ij = 𝐿𝑖𝑗 + 휀𝑖𝑗, where 휀𝑖𝑗 denotes i.i.d. Gaussian noise. Thus , 

𝐿𝑖𝑗 should be the best fitting to 𝐴𝑖𝑗 the least squares sense when 𝛺𝑖𝑗 = 0, while it is meaningless to 

approximate the zero elements in matrix 𝐴. Based on the above assumptions, Eq.1 can be rewritten as, 

𝑚𝑖𝑛
𝐿,Ω𝑖,𝑗∈{0,1}

 
1

2
‖𝛺 ∘ (𝐴 − 𝐿)‖𝐹

2 + 𝛽‖𝛺⊥‖0  , s.t. rank (𝐿) ≤ 𝛿                   (3) 

where 𝛿 is a constant to be predefined. Intrinsically, 𝛿 constrains the complexity of the recovery networks. 

𝛽 is a penalized factor, ‖ ⋅ ‖0 denotes the ℓ0 -norm, which counts the number of nonzero entries. ‖ ⋅ ‖𝐹 is 

the Frobenius norm, and the operator "o" denotes element-wise multiplication of two matrices. In addition, in 

order to preserve the community structure among must-links, we construct an undirected edge graph 

weighted with link similarity matrix 𝑆, including all the links from original network as the vertices in the 

edge graph. The similarity between link 𝑒𝑖𝑝 and link 𝑒𝑗𝑝 can be calculated by the Jaccard index [11] With 

the link similarity matrix constructed 𝑆 ∈ ℝ𝑚×𝑚, it is essential to penalise the neighbor links with distant 

similarity, while enhancing the ones with close similarity. Therefore, we enforce the link similarity into the 

network topology with structural sparsity as follow: 

∑ 𝑆(𝑒𝑖𝑗,𝑒𝑝𝑞)|𝛺𝑖𝑗 − 𝛺𝑝𝑞|(𝑒𝑖𝑗,𝑒𝑝𝑞)∈𝜀                              (4) 

Finally, above process is structural optimization on the basis of the single-layer network. In the 

multi-layer network, two strategies are adopted in this paper to ensure that must-links can be extracted in 

different network layers in a collaborative way. In the single-layer network, the recovery matrix of the 

network is required to be low-rank. In the multi-layer network, we intend to cascade the background matrix 

𝐿𝑘 of each layer to form the joint background matrix 𝐿 and requires 𝐿 to maintain a low rank on the whole. 

In order to maintain multi-layer collaborative computing, we obtain a group of multi-layer consistent edge 

sets, including the common edges of the must-links edge sets of each layer to a certain extent, while 

computing the must-links edge sets of each layer. Assume that the indicator matrix of each layer is 𝛺𝑘. 

Since the number of nodes in each layer is the same, set the multi-layer consistent indicator matrix 𝛺 of the 

same size as all 𝛺𝑘  calibrate the multi-layer consistent must-links, and restrict the indicator matrix 𝛺𝑘  of 

each layer to be as close as possible to the multi-layer consistent indicator matrix 𝛺. 

Combining the above two collaborative constraints and the global decomposition error approximation of 

multi-layer network, a multi-layer network model based on structured low rank sparse decomposition is 

formed: 

𝑚𝑖𝑛
𝐿𝑘,Ω𝑘,Ω

∑
1

2
‖𝛺⊥

𝑘 ∘ (𝐴𝑘 − 𝐿𝑘)‖𝐹
2 + 𝛼‖𝛺𝑘‖0 +

𝐾

𝑘=1
 𝛽 ∑ 𝑆𝑖𝑙,𝑗𝑙

𝑘 |𝛺𝑖𝑗
𝑘 − 𝛺𝑝𝑞

𝑘 |
(𝑒𝑖𝑗,𝑒𝑝𝑞)∈𝜀𝑘

+ 𝜂‖𝛺𝑘 − 𝛺‖𝐹
2    (5) 

where, 𝐿 = [𝐿1, ⋯ , 𝐿𝐾] is the joint background matrix, ‖𝛺𝑘 − 𝛺‖𝐹
2  is the multi-layer consistent confidence 

constraint.  

4. Model Optimization 

Since Eq.5 is a NP problem, it is very difficult to optimize the indicator matrix 𝛺, by using the kernel 

norm to relax the rank operator on 𝛺, the kernel norm has been proved to be an effective convex substitution 

of the rank operator in [12]. Therefore, Eq.5 can be rewritten as follows: 

𝑚𝑖𝑛
𝐿𝑘 ,Ω𝑖,𝑗

𝑘∈{0,1}
∑

1

2
‖𝛺𝑘 ∘ (𝐴𝑘 − 𝐿𝑘)‖𝐹

2 + 𝛽‖𝛺⊥
𝑘‖1 + 𝛼‖𝐿𝑘‖∗

𝐾

𝑘=1

+𝛾 ∑ 𝑆(𝑒𝑖𝑗,𝑒𝑝𝑞)
𝑘 |𝛺𝑖𝑗

𝑘 − 𝛺𝑝𝑞
𝑘 | + 𝜂‖𝛺𝑘 − 𝛺‖𝐹

2

(𝑒𝑖𝑗,𝑒𝑝𝑞)∈𝜀𝑘

                                    (6) 
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where β, α, γ and 𝜂 are the tuning parameters. Therefore, the Eq.6 is decomposed into energy minimization 

𝐿𝑘 and 𝛺𝑘 by using the alternating iterative algorithm, and the following three sub-problems are solved to 

separate the optimal solutions of 𝐿𝑘, 𝛺𝑘  and 𝛺. 

4.1. 𝑳𝒌- subproblem 

Given an current estimate of the must-link support 𝛺𝑘, the minimization in Eq.6 over L turns out to be 

the matrix completion problem: 

  𝑚𝑖𝑛
𝐿𝑘

1

2
‖𝛺𝑘 ∘ (𝐴𝑘 − 𝐿𝑘)‖𝐹

2 + 𝛼‖𝐿𝑘‖∗                    (7) 

There is a clear drawback in Eq.7 above, that is the nuclear norm minimization requires to execute 

expensive singular value decompositions on the whole data. To mitigate the computational pressure, we 

decompose the recovery matrix 𝐿𝑘  into two sub-matrices as 𝐿𝑘 = 𝑈𝑘 𝑉𝑘 , where 𝑈𝑘 ∈ ℝn×r and 𝑉𝑘 ∈

ℝ𝑟×𝑛 based on Mazumder’s study [13]. If 𝑟𝑎𝑛𝑘 (𝐿𝑘) ≤ 𝑚𝑖𝑛(𝑚, 𝑛), then the minimum solution of (7) is 

attained as: 

𝑚𝑖𝑛
𝐿𝑘

‖𝑃𝑘 − 𝑈𝑘𝑉𝑘‖F
2 + 𝛼(‖𝑈𝑘‖𝐹

2 + ‖𝑉𝑘‖𝐹
2)             (8) 

where 𝑃𝑘 = 𝛺𝑘 ∘ 𝐴 + 𝛺⊥
𝑘 ∘ 𝐿𝑘, which can be minimized along one coordinate direction at each iteration. Fix 

the other variables and update 𝑈𝑘 and 𝑉𝑘 respectively, so this problem has a closed-form solution: 

𝑈𝑘 = 𝑃𝑘𝑉𝑘⊤
(𝑉𝑘𝑉𝑘⊤

+ 𝛼𝐼)−1                         (9) 

𝑉𝑘 = (𝑈𝑘⊤
𝑈𝑘 + 𝛼𝐼)−1𝑈𝑘⊤

𝑃𝑘                 (10) 

where 𝐼 is the identity matrix. Finally, the recovery matrix 𝐿𝑘 can be combined via 𝐿𝑘 = 𝑈𝑘 𝑉𝑘. 

4.2. 𝜴𝒌- subproblem 

Given a current estimate of the low-rank recovery matrix 𝐿𝑘, Eq.6 can be transferred into following 

optimization function: 

𝑚𝑖𝑛
Ω𝑘

1

2
‖𝛺𝑘 ∘ (𝐴𝑘 − 𝐿𝑘)‖𝐹

2 + 𝛽‖𝛺⊥
𝑘‖1 + 𝛾 ∑ 𝑆(𝑒𝑖𝑗,𝑒𝑝𝑞)

𝑘 |𝛺𝑖𝑗
𝑘 − 𝛺𝑝𝑞

𝑘 |
(𝑒𝑖𝑗,𝑒𝑝𝑞)∈𝜀𝑘

       (11) 

Leveraging the complementary, the 𝛺⊥
𝑘  can be transformed in to 𝛺⊥

𝑘 = 𝒫0/1(𝐴) − 𝛺𝑘. Noticing that 

𝑆𝑘
𝑖𝑗 ∈ {0,1}, so Eq.13 can be expanded as follows: 

1

2
∑ (𝐴𝑘

𝑖𝑗 − 𝐿𝑘
𝑖𝑗)2𝛺𝑘

𝑖𝑗
𝑖𝑗

+ 𝛽 ∑ (𝒫0/1(𝐴𝑘)𝑖𝑗 − 𝛺𝑘
𝑖𝑗)

𝑖𝑗
+ 𝛾 ∑ 𝑆(𝑒𝑖𝑗,𝑒𝑝𝑞)

𝑘 |𝛺𝑖𝑗
𝑘 − 𝛺𝑝𝑞

𝑘 |
(𝑒𝑖𝑗,𝑒𝑝𝑞)∈𝜀𝑘

= ∑ (
1

2
(𝐴𝑘

𝑖𝑗 − 𝐿𝑘
𝑖𝑗)2 − 𝛽)

𝑖𝑗
𝛺𝑘

𝑖𝑗 + 𝛾 ∑ 𝑆(𝑒𝑖𝑗,𝑒𝑝𝑞)
𝑘 |𝛺𝑖𝑗

𝑘 − 𝛺𝑝𝑞
𝑘 |

(𝑒𝑖𝑗,𝑒𝑝𝑞)∈𝜀𝑘
+ 𝐶

     (12) 

Where 𝐿𝑘 is fixed, and 𝛽 ∑ (𝒫0/1(𝐴𝑘)𝑖𝑗)𝑖𝑗  is a constant, independent of 𝛺𝑘. The above function is similar 

to the first-order Markov Random Field model, so we can easily solve for the must-link support 𝛺𝑘  by graph 

cutting theory. 

4.3. 𝜴- subproblem 
Obtain the low-rank matrix 𝐿𝑘 and current mask matrix 𝛺𝑘  under a certain layer of multi-layer network, and 

update 𝛺 by 𝑚𝑖𝑛
Ω

∑ ‖𝛺 − 𝛺𝑘‖𝐹
2𝐾

𝑘=1
 .Finally we have a closed solution: 

𝛺 =
1

𝐾
∑ 𝛺𝑘𝐾

𝑘=1
                                   (13) 

Above all, the complete pseudocode of our sparse and structured low-rank representation for multi-layer 

network is described in Algorithm 1. According to Algorithm 2, we make use of our model to obtain the 

optimized multi-network which we finally need. The framework of the whole model is shown in Fig 1. 
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Algorithm 1: Sparse and Structured Low-rank Representation for Multi-layer network 

Input: Multilayer network 𝐺𝑘 , k = 1, … , 𝐾, parameter 𝛾 and 𝛿.  

Initialize: 𝛼, 𝛽, 𝑆𝑘 ← 0, 𝐿𝑘 ← 𝐴𝑘 , 𝑈𝑂 , 𝑉0, 𝜏 = 1𝑒 − 4, maxIter = 30. 

Output: 𝐿𝑘 , 𝛺𝑘 , 𝛺 . 

1:  repeat 

2:  Updating 𝐿𝑘: optimizing energy function Eq.8 via: 

𝑈𝑘 ← 𝑃𝑘𝑉𝑘⊤
(𝑉𝑘𝑉𝑘⊤

+ 𝛼𝐼)
−1

𝑉𝑘 ← (𝑈𝑘⊤
𝑈𝑘 + 𝛼𝐼)

−1
𝑈𝑘⊤

𝑃𝑘

𝐿𝑘 ← 𝑈𝑘𝑉𝑘

 

3:   if ran k(𝐿𝑘) ≤ 𝛿 then 

𝛼 ← 𝜂1𝛼 

go to Step 2 

end if 

4:    𝛽 ← 𝑚𝑎𝑥(𝜂2𝛽, 4.5𝜎2) 

5:  Updating 𝛺𝑘  : using graph cuts to optimize energy function Eq.12. 

6.  Updating  𝛺  : get the 𝛺 by Eq.13. 

7:  until convergence: if the maximum objective change between two consecutive iterations is 

less than τ or the maximum number of iterations reaches maxIters, then terminate the loop. 

 

Algorithm 2: Adaptive Link Selection Using Sparse and Structured Low-rank Representation for 

Multi-layer network 

Input: Multilayer network 𝐺𝑘 , k = 1, … , 𝐾, parameter 𝛾 and 𝛿.  

Output: Selected efficient links and noisy links 

1:  Computing the link similarity matrix 𝑆𝑘 using Eq.3. 

2:  Solve the Eq.6 using Algorithm 1, and obtain an optimal solution (𝐿𝑘 , 𝛺𝑘 , 𝛺). 

3:  Select the links corresponding to(𝛺𝑘 ∘ 𝐿𝑘
𝑖𝑗) = 1 as efficient links. 

4:  𝛺⊥
𝑘 = 𝒫0/1(𝐴𝑘) − 𝛺𝑘. 

5:  Select the links corresponding to (𝛺⊥
𝑘 ∘ 𝐿𝑘

𝑖𝑗) = 1 as noisy links. 

 
Fig. 1: Overview of the proposed framework 

5. Experiments 

5.1. Datasets 

In order to verify the effect of our method in different multi-layer networks, we selected 7 types of 

non-overlapping multi-layer networks as datasets, include：Football [14], Olympics [14], WBN [15], WTN 

(cat) [15], WTN (reg) [16], Cora [17] and CiteSeer [17]. The important statistics and information of 

multiplex networks are shown in Table 1. 
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Table 1: Multiplex Networks Used for Our Comparative Study. 

Networks Nodes Communities Layers 

Football 248 20 3 

Olympics 464 28 3 

WBN 279 10 5 

WTN (cat) 214 3 7 

WTN (reg) 214 5 7 

Cora 2708 7 2 

CiteSeer 3312 6 2 

5.2. Evaluation Indicator 

In this paper, we mainly use three kinds of community detection indexes, including Normalized Mutual 

Information (NMI) [18], Accuracy(ACC) [19] and Multislice Modularity(𝑄multislice ) [20]. The first two 

measures provide a quantitative way to compare the computed clusters with respect to the ground truth 

classes. To trade off the quality of the clustering against the number of clusters we use NMI. Accuracy (ACC) 

is used to measure the percentage of correct labels obtained. Given a data set containing 𝑛 vertexes, for 

each sample network, let 𝑙𝑖 be the cluster label we obtain by applying different algorithms and 𝑟𝑖 be the 

label provided by the data set. When the real community result in the dataset is unknown, we use the 

𝑄multislice  as the evaluation index of the method. 

5.3. Parameter Setting 

There are four important parameters in our model. In the experiment, we first estimate roughly the value 

of 𝛿 in Eq.12, and reduces 𝛼 from a larger value. After each iteration, if rank (𝐿𝑘) ≤ 𝛿, we reduce 𝛼 by a 

factor 𝜂1 < 1 and repeat until rank (𝐿𝑘) ≥ 𝛿. In practice, we initialize empirically 𝛼 to be the second 

largest singular value of 𝐴𝑘, and 𝜂1 = 1/√2. Meanwhile, the parameter 𝛽 in controls the sparsity of the 

outlier support. From Eq.14, we can see that 𝛺𝑖𝑗
𝑘  is more likely to be 1 if (𝐴𝑘

𝑖𝑗 − 𝐿𝑘
𝑖𝑗)2/2 > 𝛽. Thus, the 

choice of 𝛽 should depend or the noise level in network. Typically, we set 𝛽 = 4.5𝜎2 in algorithm 1, 

where 𝜎2 is estimated online by the variance of 𝐴𝑘
𝑖𝑗 − 𝐿𝑘

𝑖𝑗. In addition, for the other two parameters 𝛿 

and 𝛾, we will tune them and show their influence in our experiments in following sections. 

5.4. Experiment Results 

⚫ Community Detection with Known Ground-truth 

In order to highlight the optimization of multi-layer network topology by our method, we conduct 

clustering experiments on the original network with ground-truth datasets and the network optimized by our 

method. Here we use four common multi-layer network clustering methods, including: SNF [9], SC-GED 

[10], PMM [6] and SC-ML [7]. The experimental results are shown in Table 2-5. The experiment shows that 

our method has significant effect on multi-layer network structure promote. 

Table 2: Community Detection Results of SNF Algorithms in Datasets with Ground-truth 

Metrics Methods Football Olympics WBN WTN (cat) WTN(reg) Cora CiteSeer 

NMI 
original 0.7412 0.8193 0.2265 0.3178 0.2943 0.0176 0.0489 

ours 0.7688 0.8126 0.2419 0.3814 0.4296 0.1348 0.1502 

AC 
original 0.7108 0.7619 0.7632 0.7920 0.5211 0.2229 0.2914 

ours 0.8042 0.7527 0.7479 0.8216 0.5593 0.3198 0.4269 

Table 3: Community Detection Results of SC-GED Algorithms in Datasets with Ground-truth 

Metrics Methods Football Olympics WBN WTN (cat) WTN(reg) Cora CiteSeer 

NMI 
original 0.6593 0.5936 0.3649 0.0341 0.0432 0.0037 0.0022 

ours 0.8123 0.7243 0.4312 0.2286 0.1297 0.2213 0.0149 

AC 
original 0.6471 0.5214 0.2176 0.5116 0.5603 0.2136 0.4391 

ours 0.7732 0.6552 0.4859 0.5693 0.6319 0.3972 0.4828 
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Table 4: Community Detection Results of PMM Algorithms in Datasets with Ground-truth 

Metrics Methods Football Olympics WBN WTN (cat) WTN(reg) Cora CiteSeer 

NMI 
original 0.2473 0.1892 0.2086 0.0640 0.0321 0.0098 0.0067 

ours 0.4418 0.3274 0.3714 0.1423 0.1239 0.0871 0.0594 

AC 
original 0.1856 0.1307 0.3147 0.4421 0.2744 0.1647 0.2047 

ours 0.2430 0.2396 0.3892 0.4919 0.4473 0.2864 0.3428 

Table 5: Community Detection Results of SC-ML Algorithms in Datasets with Ground-truth 

Metrics Methods Football Olympics WBN WTN (cat) WTN(reg) Cora CiteSeer 

NMI 
original 0.8403 0.9241 0.3477 0.1016 0.2649 0.1137 0.0741 

ours 0.8367 0.9310 0.4143 0.1849 0.3941 0.1439 0.1082 

AC 
original 0.8037 0.8929 0.4190 0.4473 0.3826 0.3063 0.2768 

ours 0.8341 0.8847 0.5397 0.4634 0.5147 0.2954 0.3690 

⚫ Community Detection with Unknown Ground-truth 

To quantify or evaluate the level of community partition of unlabelled multi-layer networks, the 

Multislice Modularity 𝑄multislice is a viable indicator. In this section, we will compare the modularity of the 

original network, our method in 7 real network datasets without ground-truth, as shown in Table 6. 

Table 6:  𝑄multislice of Different Network Recovery Methods in Datasets without Ground-truth. 

 Football Olympics WBN WTN (cat) WTN (reg) Cora CiteSeer 

original 0.7435 0.6811 0.5324 0.7206 0.7127 0.4275 0.3921 

ours 0.7629 0.7353 0.6152 0.7461 0.7583 0.4526 0.4178 

  

Here, for network without ground-truth, we identify the different recovered networks using unified the 

method proposed by Mucha [20]. From the results of Table 6, we can see that our matrix recovery method 

has greatest improved the modularity of the original network, which shows that our method has obvious 

advantageous on the community partition task with unknown labels. 

5.5. Parameter Sensitivity 

  
Fig. 2: The influence of parameters to precision of our model. 

As mentioned above, we have only two parameters to choose, 𝛿 and γ. To simplify, here we calculate 

the proportion of the same elements between the recovery matrix and the original adjacency matrix as the 

evaluation precision. From Fig.2, for 𝛿 value, after repeated tests, we find that the change of 𝛿 value will 

not affect the results on 4 different networks, as long as it is within a reasonable range. Our results show that 

the change of 𝛿 value does not affect precision, 𝛿 is desired rank of the estimated low-rank component. In 

addition, the parameter γ is a constant force controlling smoothing normalization in Eq.14. Experiments 

show that the value of γ are also robust to the results. 
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6. Conclusion 

In this paper, we studied selecting links for complex networks with multiple layers. We proposed an 

effective framework to let different layers collaborate with each other and capture the consistent low-rank 

and sparse representation across different layers. In addition, we proposed an effective optimization scheme, 

which does not require any prior labelled data. We evaluated the performance of our proposed approach on 

many real-world databases. Experimental results on both the multiplex with ground-truth and without 

ground-truth demonstrated the effectiveness of our proposed framework. In the future, we plan to apply our 

framework to more applications, such as large scale multiplex and heterogeneous networks. 
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